
Educating the e-citizen

Roberto Di Cosmo

Universit́e de Paris 7

http://www.dicosmo.org

Bologna, June 26th 2006

http://www.dicosmo.org

Plan

◮ Educating the computer scientist

⊲ the challenge of software complexity

⊲ the promise of free software (in education, in research)

◮ Educating the e-citizen

Some software we use is getting huge . . .

linux-2.6.16.20> sloccount .

[...]

Totals grouped by language (dominant language first):

ansic: 4608272 (95.46%)

asm: 204701 (4.24%)

perl: 5614 (0.12%)

yacc: 2606 (0.05%)

sh: 2230 (0.05%)

cpp: 1769 (0.04%)

lex: 1510 (0.03%)

lisp: 218 (0.00%)

python: 167 (0.00%)

awk: 99 (0.00%)

pascal: 41 (0.00%)

Total Physical Source Lines of Code (SLOC) = 4,827,227

Data generated using David A. Wheeler’s ’SLOCCount’.

and quite complex. . .

The software ecosystem is getting complex too. . .

The relationships among software components are growing intricate. . .

A good engineer has a demanding life

◮ design real-world systems that will go into production

◮ understand complex software,

at least as much as necessary to modify and adapt it

◮ build complex systems by reusing existing components

◮ interact with other, often strongly opinioned, developers

Yet, we still teach computer science like 20 years ago !

◮ one algorithm at a time

◮ one monolithic program (big or small) for each project

◮ one student at a time

this needs to change, and free software isthekey

An example : teaching algorithms in a modern way

Let’s take one of the favorite intruductions to dynamic programming

Longest Common Subsequence (LCS)

given two sequencesX = (x1, x2, . . . xn) andY = (y1, y2, . . . ym), we

whish to find a maximum length common subsequence of X and Y.

For example, for X = BDCABA and Y = ABCBDAB, the sequence BCBA is such a

common subsequence (BDAB is another one).

How do we find one ?

Sould we enumerate all subsequences of X and Y, then find the common ones and

pick a longest one ?

Hey, that would require exponential time !

The algorithmic insight, 1

We remark that the LCS problem has anoptimal substructureproperty :

for X = (x1, x2, . . . xn) andY = (y1, y2, . . . ym), andZ = z1, . . . , zk an LCS

◮ if xn = ym thenzk = xn = ym andZk−1 is an LCS ofXn−1 andYm−1

◮ if xn 6= ym thenzk 6= xn impliesZ is an LCS ofXn−1 andY

◮ if xn 6= ym thenzk 6= ym impliesZ is an LCS ofX andYm−1

The algorithmic insight, 2

So we can fill ann by m tablec[i, j] containing the length of the LCS ofXi andYj

c[i, j] =

0 i = 0 or j = 0

c[i − 1, j − 1] + 1 xi > 0, yj > 0, xi = yj

max(c[i, j − 1], c[i − 1, j]) xi > 0, yj > 0, xi 6= yj

The algorithmic insight, 3

This can be done bottom up with the simple code that follows

for i = 1 to n do c[i,0] = 0

for j = 1 to m do c[0,j] = 0

for i = 1 to n do

for j = 1 to m do

if x[i]=y[j] then c[i,j] = c[i-1,j-1] +1

else c[i,j] = max(c[i,j-1], c[i-1,j])

Notice that :

◮ we can actually recover an LCS from the matrixc

◮ the algorithm runs inO(mn) time

◮ the algorithm requiresO(mn) space

The algorithmic insight, 4

Many lecturers conclude “this is how thediff program works !”

really?

Is O(nm) an acceptable space and time complexity,in practice?

Is diff really building ann by m array oftext lines?

Is diff really comparingtext lines?

Is your average studentasking himself these fundamental questions ?

With proprietary software, you would never know.

With free softwarea, things change radically !
a4 rights :- execute the code- study and adapt the (source) code- distribute the code- distribute the (mo-

dified) sources

A look at diff internals

apt-get source diffutils

cd diffutils-2.8.1/src

less analyze.c

...

/* The basic algorithm is described in:

"An O(ND) Difference Algorithm and its Variations", Eugene Myers,

Algorithmica Vol. 1 No. 2, 1986, pp. 251-266;

see especially section 4.2, which describes the variation used below.

Unless the --minimal option is specified, this code uses the TOO_EXPENSIVE

heuristic, by Paul Eggert, to limit the cost to O(N**1.5 log N)

at the price of producing suboptimal output for large inputs with

many differences.

The basic algorithm was independently discovered as described in:

"Algorithms for Approximate String Matching", E. Ukkonen,

Information and Control Vol. 64, 1985, pp. 100-118. */

A look at diff internals, 2

less io.c

...

/* Lines are put into equivalence classes of lines that match in lines_differ.

Each equivalence class is represented by one of these structures,

but only while the classes are being computed.

Afterward, each class is represented by a number. */

struct equivclass

{

lina next; /* Next item in this bucket. */

hash_value hash; /* Hash of lines in this class. */

char const *line; /* A line that fits this class. */

size_t length; /* That line’s length, not counting its newline.

};

/* Hash-table: array of buckets, each being a chain of equivalence classes.

static lin *buckets;

ainteger holding a pointer

A look at diff internals, 3

less analyze.c

...

/* Discard lines from one file that have no matches in the other file.

A line which is discarded will not be considered by the actual

comparison algorithm; it will be as if that line were not in the file.

The file’s ‘realindexes’ table maps virtual line numbers

(which don’t count the discarded lines) into real line numbers;

this is how the actual comparison algorithm produces results

that are comprehensible when the discarded lines are counted.

When we discard a line, we also mark it as a deletion or insertion

so that it will be printed in the output. */

static void

discard_confusing_lines (struct file_data filevec[])

Free software makes a difference

By looking at thefree source codeof a real-world, industry-strength implementation

of thediff algorithm, our students have learned :

◮ a real-world program is much more than justonealgorithm

⊲ optimize the common case (theO(DN))

⊲ use hashing where appropriate (line equivalence classes)

⊲ reduce the size of the problem (remove lines that are not common)

◮ follow references tofreely accessiblea research papers

◮ documentation, and comments, are essential to understand the code
athis is really essential !

Free software also poses novel challenges

The challenge :

Manage the complexity of very large software systems, like those in a free

software distribution

A difficult problem

◮ no single architect

◮ version change all the time

◮ components (units, packages) come and go

This is why Free Software has created the role of adistribution editor

The role of a distribution editor is novel :

upstream tracking : must follow the evolution of the sources

the developer is almost never the packager !

integration : must offer a coherenta collection of packages

Coherence relies on properly handling, and checking,dependencies

testing : metadata will never be complete, so testing is necessary

distribution : new packages must be delivered fast, without breaking existing

configurations

This isnot easy :

Mandrake’s 6-month release cycle required30 man-years.

An overview of Mandriva’s lifecycle (≈ 9.000 units)

An overview of Debians’s lifecycle (≈ 19.000 units)

The EDOS project

Funded by the European Community, IST.

Goal :improve the production process of a complex software system, like a free

software distribution, usingformal methods:

◮ package management : upstream tracking, dependency checkinga, thinning,

rebuilding from scratch

◮ testing

◮ distribution : specialised algorithms for P2P clustering and event notification

◮ process measurement

This isradically neww.r.t. the proprietary software world.

Metadata in commonbinary package formats is complex

dependenciespackage A needs another package B to work properly.

conflicts package A that cannot be installed when package B is.

virtual packages and provides several packages can say they provide a “virtual

package” ; other packages can depend on the virtual packages(ex : web browser,

mta. . .).

versioned dependencies and conflictsdependencies or conflicts can mention

package versions.

complex boolean dependenciespackage A can depend on package B AND

(package C OR package D).

feature dependenciesa package can require some other package - any other

package - providing feature F (ex : need file /bin/sh).

An example

Package : binutils

Priority : standard

Section : devel

Installed-Size : 5976

Maintainer : James Troup <james@nocrew.org>

Architecture : i386

Version : 2.15-6

Provides : elf-binutils

Depends : libc6 (>= 2.3.2.ds1-21)

Suggests : binutils-doc (= 2.15-6)

Conflicts : gas, elf-binutils, modutils (<< 2.4.19-1)

Filename : pool/main/b/binutils/binutils 2.15-6 i386.deb

Size : 2221396

MD5sum : e76056eb0d6a0f14bc267bd7d0f628a5

Description : The GNU assembler, linker and binary utilities

The programs in this package are used to assemble, link and manipulate

binary and object files. They may be used in conjunction with a compiler

and various libraries to build programs.

Checking packagewise installability

The package installation problem

“given a repository R, can I install a package P =(u,v) ?”

Solving this problem is central to :

◮ analyse a repository

◮ allow distribution maintainers to discover early problemsdue to the changes in the

package versions

Package installation as boolean constraint solving

◮ Debian uses unary constraints

⊲ u meaning “any version of unitu”a

⊲ u op const with op being=,>>,<<,>=,=< meaning “any versionv of unit u

such thatv op const is true”.

these can be encoded as boolean constraints : a repository becomes the

conjunction of the dependency and conflict relations

◮ for Debian repositories, we need also to model the fact that only one version of a

unit u can be installed at a time :

∧

v1,v2∈Ru
v1 6=v2

¬(Iv1

u ∧ Iv2

u)

Installation as boolean constraint solving : an example

Package : libc6

Version : 2.2.5-11.8

Package : libc6

Version : 2.3.5-3

Package : libc6

Version : 2.3.2.ds1-22

Depends : libdb1-compat

Package : libdb1-compat

Version : 2.1.3-8

Depends : libc6 (>=

2.3.5-1)

Package : libdb1-compat

Version : 2.1.3-7

Depends : libc6 (>=

2.2.5-13)

becomes

¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)

∧

¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)

∧

¬(libc62.3.5−3 ∧ libc62.2.5−11.8)

∧

¬(libdb1-compat2.1.3−7 ∧ libdb1-compat2.1.3

∧

libc62.3.2.ds1−22 →

(libdb1-compat2.1.3−7 ∨ libdb1-compat2.1.3−

∧

libdb1-compat2.1.3−7 →

(libc62.3.2.ds1−22 ∨ libc62.3.5−3)

∧

libdb1-compat2.1.3−8 → libc62.3.5−3

Installation as boolean constraint solving : end

Now, checking whether a particular versionv of a unitu is installable boils down to

finding a boolean assignment that makesvu true, and satisfies the encoding of the

repository.

Installation as boolean constraint solving : end

In our example, to test installability oflibc6 version2.3.2.ds1-22 we get the

equivalentSAT problem

libc62.3.2.ds1−22

∧

¬(libc62.3.2.ds1−22 ∧ libc62.2.5−11.8)

∧

¬(libc62.3.2.ds1−22 ∧ libc62.3.5−3)

∧

¬(libc62.3.5−3 ∧ libc62.2.5−11.8)

∧

¬(libdb1-compat2.1.3−7 ∧ libdb1-compat2.1.3−8)

∧

libc62.3.2.ds1−22 →

(libdb1-compat2.1.3−7 ∨ libdb1-compat2.1.3−8)

∧

libdb1-compat2.1.3−7 →

(libc62.3.2.ds1−22 ∨ libc62.3.5−3)

∧

i.e.

p cnf 5 8

4 0

1 2 -4 0

-4 -5 0

-3 -5 0

-3 -4 0

-2 3 0

-1 3 4 0

-1 -2 0

Practical results

◮ The resulting formulas can be large (median formula size 400litterals) ; luckily,

their SAT-temperature is low.

◮ Some formulas can be hardera.

◮ A serious SAT-solver is required.

This is incorporated in the EDOSdebcheck/rpmchecktool.

Installation is NP-complete !

We can reduce 3SAT to the Debian package installation problem.

In practice, analyzing the full Debian pool on this laptop (≈ 40000 packages) takes

less than 2 minutes.

Free software as a source for research

The free software community can provide interesting new research problems to

computer scientists, and computer scientists can help freesoftware.

Please look athttp://www.edos-project.org, especially

◮ the WP2 deliverable 2.2

◮ the subversion repository

http://www.edos-project.org/xwiki/bin/Main/EdosSvn

http://www.edos-project.org
http://www.edos-project.org/xwiki/bin/Main/EdosSvn

The last frontier : educating the e-citizen

All this is surely nice, but . . . can we stop here ?

IT is becoming pervasive :

◮ e-government

◮ e-whatever (health, law, tax, etc.)

◮ e-vote !

Is it just enough to teach our fellows about our beloved technology ?

Even with free software everywhere ?

Let’s make a test. . .

E-vote

We go for a tour in the state of Virginia. . . they have some cooltechnology in store

for us. . .

http://www.alexandriavoter.org/eSlate/eSlate slide show.html

Do you buy this ?

http://www.alexandriavoter.org/eSlate/eSlate_slide_show.html

E-voting properties

voter verification only legitmate voters can cast a vote, only once, and only for

themselves

anonymity nobody knowssomebody else’svote

control the voter can verify thathisvote is rightly counted

no coercion nobody can “prove” having cast a particular vote

Notice that the last 2 requirements seem contradictory. . .

Rebecca Mercuri proposed asolutionyears ago. . .

but Italians have shown how to cheat anyway !

Building solid mental models of computing

If we want our students to become educated e-citizens, we face the challenge of

transmitting them mental models that make some facts evident to them :

◮ computersexecuteinstructions

◮ instructionscanbe modified

◮ computers manipulateinformation

◮ we (humans) only have access to arepresentationof information

◮ a representationof an objectis not the object ! (see the excellent article “Ceci

n’est pas une urne” on Andrew Appel’s web page, in english)

◮ hence, we should never stop questioning technology. . .

Conclusion

Our world is becoming more complex every day :

◮ free software, together with open access to research articles, are the key to a better

education of computer scientists

◮ free software is fueling interesting research on complex systems

◮ and yet, our most basic task is to educate thee-citizen, not just the computer

scientist or the engineer

◮ we need to devise new ways of transmittingknowledgeabout computing systems

◮ the italian philosopher Vico (circa 1700) has an interesting suggestion :

conoscerèe saper fare

Thank you for your attention

